LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electron Propagator Self-Energies versus Improved GW100 Vertical Ionization Energies.

Photo from wikipedia

Ab initio electron propagator (EP) methods that are free of adjustable parameters in their self-energy formulae and in the generation of their orbital bases have been applied to the calculation… Click to show full abstract

Ab initio electron propagator (EP) methods that are free of adjustable parameters in their self-energy formulae and in the generation of their orbital bases have been applied to the calculation of the lowest vertical ionization energies (VIEs) of the GW100 set. An improved set of standard results accompanied by irreducible representation assignments has been produced indirectly with coupled-cluster singles and doubles plus perturbative triples, i.e., CCSD(T), total energy differences at initial-state geometries reoptimized (in 28 cases) with the largest applicable point groups. The best compromises of accuracy and efficiency belong to a new generation of EP self-energies, several members of which may be derived from an intermediately normalized, Hermitized super-operator metric. The following diagonal self-energy methods are optimal: opposite-spin non-Dyson second order (os-nD-D2), approximately renormalized partial third order (P3+), approximately renormalized quasiparticle third order (Q3+), and non-Dyson approximately renormalized linear third order version B (nD-L3+B). Their mean absolute errors (MAEs) in electron volts and arithmetic scaling factors expressed in terms of occupied (O) and virtual (V) orbital dimensions are, respectively, (0.18, OV2), (0.14, O2V3), (0.15, O2V3), and (0.11, OV4). The 0.06 eV MAE for the non-diagonal, sixth-power (O2V4) Brueckner doubles, triple-field operator (BD-T1) EP method is exceeded by the 0.1 eV MAE with respect to experiments in seventh-power, ΔCCSD(T) calculations and indicates that BD-T1 may serve as a direct, spin-symmetry-conserving alternative in the generation of standard results for VIEs of larger, closed-shell molecules.

Keywords: ionization energies; electron propagator; self energies; vertical ionization; self

Journal Title: Journal of chemical theory and computation
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.