LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multi-state Energy Landscape for Photoreaction of Stilbene and Dimethyl-stilbene.

Photo from wikipedia

We have recently developed the reaction space projector (ReSPer) method, which constructs a reduced-dimensionality reaction space uniquely determined from reference reaction paths for a polyatomic molecular system and projects classical… Click to show full abstract

We have recently developed the reaction space projector (ReSPer) method, which constructs a reduced-dimensionality reaction space uniquely determined from reference reaction paths for a polyatomic molecular system and projects classical trajectories into the same reaction space. In this paper, we extend ReSPer to the analysis of photoreaction dynamics and relaxation processes of stilbene and present the concept of a "multi-state energy landscape," incorporating the ground- and excited-state reaction subspaces. The multi-state energy landscape successfully explains the previously established photoreaction processes of cis-stilbene, such as the cis-trans photoisomerization and photocyclization. In addition, we discuss the difference in the excited-state reaction dynamics between stilbene and 1,1'-dimethyl stilbene based on a common reaction subspace determined from the framework part of reference structures with different number of atoms. This approach allows us to target any molecule with a common framework, greatly expanding the applicability of the ReSPer analysis. The multi-state energy landscape provides fruitful insight into photochemical reactions, exploring the excited- and ground-state potential energy surfaces, as well as comprehensive reaction processes with nonradiative transitions between adiabatic states, within the stage of a reduced-dimensionality reaction space.

Keywords: state; stilbene; reaction; multi state; state energy

Journal Title: Journal of chemical theory and computation
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.