LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiagent Reinforcement Learning-Based Adaptive Sampling for Conformational Dynamics of Proteins.

Photo from wikipedia

Machine learning is increasingly applied to improve the efficiency and accuracy of molecular dynamics (MD) simulations. Although the growth of distributed computer clusters has allowed researchers to obtain higher amounts… Click to show full abstract

Machine learning is increasingly applied to improve the efficiency and accuracy of molecular dynamics (MD) simulations. Although the growth of distributed computer clusters has allowed researchers to obtain higher amounts of data, unbiased MD simulations have difficulty sampling rare states, even under massively parallel adaptive sampling schemes. To address this issue, several algorithms inspired by reinforcement learning (RL) have arisen to promote exploration of the slow collective variables (CVs) of complex systems. Nonetheless, most of these algorithms are not well-suited to leverage the information gained by simultaneously sampling a system from different initial states (e.g., a protein in different conformations associated with distinct functional states). To fill this gap, we propose two algorithms inspired by multiagent RL that extend the functionality of closely related techniques (REAP and TSLC) to situations where the sampling can be accelerated by learning from different regions of the energy landscape through coordinated agents. Essentially, the algorithms work by remembering which agent discovered each conformation and sharing this information with others at the action-space discretization step. A stakes function is introduced to modulate how different agents sense rewards from discovered states of the system. The consequences are three-fold: (i) agents learn to prioritize CVs using only relevant data, (ii) redundant exploration is reduced, and (iii) agents that obtain higher stakes are assigned more actions. We compare our algorithm with other adaptive sampling techniques (least counts, REAP, TSLC, and AdaptiveBandit) to show and rationalize the gain in performance.

Keywords: adaptive sampling; reinforcement learning; based adaptive; learning based; multiagent reinforcement

Journal Title: Journal of chemical theory and computation
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.