LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Accelerating Linear-Response Time-Dependent Hybrid Density Functional Theory with Low-Rank Decomposition Techniques in the Plane-Wave Basis.

Photo by jontyson from unsplash

We present an efficient low-rank implementation of linear-response time-dependent density functional theory for hybrid functionals (hybrid-LR-TDDFT) within the plane-wave pseudopotential framework. The adaptively compressed exchange (ACE) operator and the natural… Click to show full abstract

We present an efficient low-rank implementation of linear-response time-dependent density functional theory for hybrid functionals (hybrid-LR-TDDFT) within the plane-wave pseudopotential framework. The adaptively compressed exchange (ACE) operator and the natural transition orbitals (NTOs) are introduced to build the low-rank representation of the nonlocal exchange operator in the hybrid-LR-TDDFT Hamiltonian. Numerical tests demonstrate that the ACE approximation significantly reduces the computational cost of applying the nonlocal exchange operator without loss of accuracy, and the NTO approximation can further accelerate the hybrid-LR-TDDFT calculations by introducing an NTO cutoff parameter. This new method enables us to effectively study the excitonic properties of two-dimensional MoS2 consisting of 216 atoms and ∼1900 electrons with range-separated hybrid functionals on a single graphics processing unit.

Keywords: theory; linear response; time dependent; low rank; response time; rank

Journal Title: Journal of chemical theory and computation
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.