LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimal Mode Combination in the Multiconfiguration Time-Dependent Hartree Method through Multivariate Statistics: Factor Analysis and Hierarchical Clustering.

Photo by jontyson from unsplash

The multiconfiguration time-dependent Hartree (MCTDH) method and its multilayer extension (ML-MCTDH) are powerful algorithms for the efficient computation of nuclear quantum dynamics in high-dimensional systems. By providing time-dependent variational orbitals… Click to show full abstract

The multiconfiguration time-dependent Hartree (MCTDH) method and its multilayer extension (ML-MCTDH) are powerful algorithms for the efficient computation of nuclear quantum dynamics in high-dimensional systems. By providing time-dependent variational orbitals and an optimal choice of layered effective degrees of freedom, one is able to reduce the computational cost to an amenable number of configurations. However, choices related to selecting properly the mode grouping and tensor tree are strongly system dependent and, thus far, subjectively based on intuition and/or experience. Therefore, herein we detail a new protocol based on multivariate statistics─more specifically, factor analysis and hierarchical clustering─for a reliable and convenient guiding in the optimal design of such complex "system-of-systems" tensor-network decompositions. The advantages of employing the new algorithm and its applicability are tested on water and two floppy protonated water clusters with large amplitude motions.

Keywords: time; time dependent; dependent hartree; factor analysis; multivariate statistics; multiconfiguration time

Journal Title: Journal of chemical theory and computation
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.