LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Epik: pKa and Protonation State Prediction through Machine Learning.

Photo from wikipedia

Epik version 7 is a software program that uses machine learning for predicting the pKa values and protonation state distribution of complex, druglike molecules. Using an ensemble of atomic graph… Click to show full abstract

Epik version 7 is a software program that uses machine learning for predicting the pKa values and protonation state distribution of complex, druglike molecules. Using an ensemble of atomic graph convolutional neural networks (GCNNs) trained on over 42,000 pKa values across broad chemical space from both experimental and computed origins, the model predicts pKa values with 0.42 and 0.72 pKa unit median absolute and root mean square errors, respectively, across seven test sets. Epik version 7 also generates protonation states and recovers 95% of the most populated protonation states compared to previous versions. Requiring on average only 47 ms per ligand, Epik version 7 is rapid and accurate enough to evaluate protonation states for crucial molecules and prepare ultra-large libraries of compounds to explore vast regions of chemical space. The simplicity and time required for the training allow for the generation of highly accurate models customized to a program's specific chemistry.

Keywords: pka; machine learning; protonation; protonation state

Journal Title: Journal of chemical theory and computation
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.