LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Prediction of Bond Dissociation Energies/Heats of Formation for Diatomic Transition Metal Compounds: CCSD(T) Works.

Photo by richardrschunemann from unsplash

It was recently reported ( J. Chem. Theory Comput. 2015 , 11 , 2036 - 2052 ) that the coupled cluster singles and doubles with perturbative triples method, CCSD(T), should… Click to show full abstract

It was recently reported ( J. Chem. Theory Comput. 2015 , 11 , 2036 - 2052 ) that the coupled cluster singles and doubles with perturbative triples method, CCSD(T), should not be used as a benchmark tool for the prediction of dissociation energies (heats of formation) for the first row transition metal diatomics based on a comparison with the experimental thermodynamic values for a set of 20 diatomics. In the present work the bond dissociation energies as well as the heats of formation for those diatomics have been calculated by the Feller-Peterson-Dixon approach at the CCSD(T)/complete basis set (CBS) level of theory including scalar relativistic corrections and correlation of the outer shell of core electrons in addition to the valence electrons. Revised experimental values for the hydrides are presented that are based on new heterolytic R-H bond dissociation energies, which are needed for analysis of the mass spectrometry experiments. The agreement between the calculated bond dissociation energies and the revised experimental values of the hydrides is good. Good agreement of the calculated bond dissociation energies/heats of formation is also found for most of the chlorides, oxides, and sulfides given the experimental error bars from experiment and those of the transition metal atoms in the gas phase. Thus, reliable results can be achieved by the CCSD(T) method at the CBS limit. The use of PW91 orbitals for the CCSD(T) calculations improves the predictions for some compounds with large T1 diagnostics at the HF-CCSD(T) level. The optimized bond distances and calculated vibrational frequencies for the diatomics also agree well with the available experimental values.

Keywords: bond dissociation; dissociation; heats formation; dissociation energies

Journal Title: Journal of chemical theory and computation
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.