LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation and Optimization of Interface Force Fields for Water on Gold Surfaces.

Photo from wikipedia

The structure and dynamics of water at gold surfaces are important for a variety of applications, including lab on a chip and electrowetting. Classical molecular dynamics (MD) simulations are frequently… Click to show full abstract

The structure and dynamics of water at gold surfaces are important for a variety of applications, including lab on a chip and electrowetting. Classical molecular dynamics (MD) simulations are frequently used to investigate systems with water-gold interfaces, such as biomacromolecules in gold nanoparticle dispersions, but the accuracy of the simulations depends on the suitability of the force field. Density functional theory (DFT) calculations of a water molecule on gold were used as a benchmark to assess force field accuracy. It was found that Lennard-Jones potentials did not reproduce the DFT water-gold configurational energy landscape, whereas the softer Morse and Buckingham potentials allowed for a more accurate representation. MD simulations with different force fields exhibited rather different structural and dynamic properties of water on a gold surface. This emphasizes the need for experimental data and further effort on the validation of a realistic force field for water-gold interactions.

Keywords: gold surfaces; water; water gold; gold; force fields

Journal Title: Journal of chemical theory and computation
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.