LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Time-Dependent Formulation of Resonance Raman Optical Activity Spectroscopy.

Photo from wikipedia

In this work, we extend the theoretical framework recently developed for the simulation of resonance Raman (RR) spectra of medium-to-large sized systems to its chiral counterpart, namely, resonance Raman optical… Click to show full abstract

In this work, we extend the theoretical framework recently developed for the simulation of resonance Raman (RR) spectra of medium-to-large sized systems to its chiral counterpart, namely, resonance Raman optical activity (RROA). The theory is based on a time-dependent (TD) formulation, with the transition tensors obtained as half-Fourier transforms of the appropriate cross-correlation functions. The implementation has been kept as general as possible, supporting adiabatic and vertical models for the PES representation, both in Cartesian and internal coordinates, with the possible inclusion of Herzberg-Teller (HT) effects. Thanks to the integration of this TD-RROA procedure within a general-purpose quantum-chemistry program, both solvation and leading anharmonicity effects can be included in an effective way. The implementation is validated on one of the smallest chiral molecule (methyloxirane). Practical applications are illustrated with three medium-size organic molecules (naproxen-OCD3, quinidine and 2-Br-hexahelicene), whose simulated spectra are compared to the corresponding experimental data.

Keywords: dependent formulation; time dependent; spectroscopy; optical activity; raman optical; resonance raman

Journal Title: Journal of chemical theory and computation
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.