LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Anharmonicity of Vibrational Modes in Hydrogen Chloride-Water Mixtures.

Photo by sergeykoznov from unsplash

A thorough analysis of molecular vibrations in the binary system hydrogen chloride/water is presented considering a set of small mixed and pure clusters. In addition to the conventional normal-mode analysis… Click to show full abstract

A thorough analysis of molecular vibrations in the binary system hydrogen chloride/water is presented considering a set of small mixed and pure clusters. In addition to the conventional normal-mode analysis based on the diagonalization of the Hessian, anharmonic frequencies were obtained from the perturbative VPT2 and PT2-VSCF method using hybrid density functional theory. For all normal modes, potential energy curves were modeled by displacing the atoms from the minimum geometry along the normal mode vectors. Three model potentials, a harmonic potential, a Morse potential, and a fourth order polynomial, were applied to fit these curves. From these data, it was possible not only to characterize distinct vibrations as mainly harmonic, anharmonic, or involving higher order terms but also to extract force constants, k, and anharmonicity constants, xe. By investigating all different types of intramolecular vibrations including covalent stretching or bending vibrations and intermolecular vibrations such as librations, we could demonstrate that while vibrational frequencies can be obtained applying scaling factors to harmonic results, useful anharmonicity constants cannot be predicted in such a way and the usage of more elaborate vibrational methods is necessary. For each particular type of molecular vibration, we could however determine a relationship between the wavenumber or wavenumber shift and the anharmonicity constant, which allows us to estimate mode dependent anharmonicity constants for larger clusters in the future.

Keywords: hydrogen chloride; anharmonicity constants; anharmonicity vibrational; anharmonicity; chloride water

Journal Title: Journal of chemical theory and computation
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.