LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

metaFALCON: A Program Package for Automatic Sampling of Conical Intersection Seams Using Multistate Metadynamics.

Photo by kommumikation from unsplash

The multistate metadynamics for automatic exploration of conical intersection seams and systematic location of minimum energy crossing points in molecular systems and its implementation into the software package metaFALCON is… Click to show full abstract

The multistate metadynamics for automatic exploration of conical intersection seams and systematic location of minimum energy crossing points in molecular systems and its implementation into the software package metaFALCON is presented. Based on a locally modified energy gap between two Born-Oppenheimer electronic states as a collective variable, multistate metadynamics trajectories are driven toward an intersection point starting from an arbitrary ground state geometry and are subsequently forced to explore the conical intersection seam landscape. For this purpose, an additional collective variable capable of distinguishing structures within the seam needs to be defined and an additional bias is introduced into the off-diagonal elements of an extended (multistate) electronic Hamiltonian. We demonstrate the performance of the algorithm on the examples of the 1,3-butadiene, benzene, and 9H-adenine molecules, where multiple minimum energy crossing points could be systematically located using the Wiener number or Cremer-Pople parameters as collective variables. Finally, with the example of 9H-adenine, we show that the multistate metadynamics potential can be used to obtain a global picture of a conical intersection seam. Our method can be straightforwardly connected with any ab initio or semiempirical electronic structure theory that provides energies and gradients of the respective electronic states and can serve for systematic elucidation of the role of conical intersections in the photophysics and photochemistry of complex molecular systems, thus complementing nonadiabatic dynamics simulations.

Keywords: intersection; package; intersection seams; multistate metadynamics; conical intersection; multistate

Journal Title: Journal of chemical theory and computation
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.