LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molecular Vibrational Frequencies with Multiple Quantum Protons within the Nuclear-Electronic Orbital Framework.

Photo by sarahdorweiler from unsplash

The nuclear-electronic orbital (NEO) approach treats all electrons and specified nuclei, typically protons, on the same quantum mechanical level. Proton vibrational excitations can be calculated using multicomponent time-dependent density functional… Click to show full abstract

The nuclear-electronic orbital (NEO) approach treats all electrons and specified nuclei, typically protons, on the same quantum mechanical level. Proton vibrational excitations can be calculated using multicomponent time-dependent density functional theory (NEO-TDDFT) for fixed classical nuclei. Recently the NEO-DFT(V) approach was developed to enable the calculation of molecular vibrational frequencies for modes composed of both classical and quantum nuclei. This approach uses input from NEO-TDDFT to construct an extended NEO Hessian that depends on the expectation values of the quantum protons as well as the classical nuclear coordinates. Herein strategies are devised for extending these approaches to molecules with multiple quantum protons in a self-contained, effective, and computationally practical manner. The NEO-TDDFT method is shown to describe vibrational excitations corresponding to collective nuclear motions, such as linear combinations of proton vibrational excitations. The NEO-DFT(V) approach is shown to incorporate the most significant anharmonic effects in the molecular vibrations, particularly for the hydrogen stretching modes. These theoretical strategies pave the way for a wide range of multicomponent quantum chemistry applications.

Keywords: electronic orbital; molecular vibrational; multiple quantum; quantum protons; nuclear electronic; vibrational frequencies

Journal Title: Journal of chemical theory and computation
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.