LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Druglike Small Molecule that Targets r(CCUG) Repeats in Myotonic Dystrophy Type 2 Facilitates Degradation by RNA Quality Control Pathways.

Photo by stayandroam from unsplash

Myotonic dystrophy type 2 (DM2) is one of >40 microsatellite disorders caused by RNA repeat expansions. The DM2 repeat expansion, r(CCUG)exp (where "exp" denotes expanded repeating nucleotides), is harbored in… Click to show full abstract

Myotonic dystrophy type 2 (DM2) is one of >40 microsatellite disorders caused by RNA repeat expansions. The DM2 repeat expansion, r(CCUG)exp (where "exp" denotes expanded repeating nucleotides), is harbored in intron 1 of the CCHC-type zinc finger nucleic acid binding protein (CNBP). The expanded RNA repeat causes disease by a gain-of-function mechanism, sequestering various RNA-binding proteins including the pre-mRNA splicing regulator MBNL1. Sequestration of MBNL1 results in its loss-of-function and concomitant deregulation of the alternative splicing of its native substrates. Notably, this r(CCUG)exp causes retention of intron 1 in the mature CNBP mRNA. Herein, we report druglike small molecules that bind the structure adopted by r(CCUG)exp and improve DM2-associated defects. These small molecules were optimized from screening hits from an RNA-focused small-molecule library to afford a compound that binds r(CCUG)exp specifically and with nanomolar affinity, facilitates endogenous degradation of the aberrantly retained intron in which it is harbored, and rescues alternative splicing defects.

Keywords: dystrophy type; small molecule; druglike small; ccug exp; myotonic dystrophy; type

Journal Title: Journal of medicinal chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.