Myotonic dystrophy type 2 (DM2) is one of >40 microsatellite disorders caused by RNA repeat expansions. The DM2 repeat expansion, r(CCUG)exp (where "exp" denotes expanded repeating nucleotides), is harbored in… Click to show full abstract
Myotonic dystrophy type 2 (DM2) is one of >40 microsatellite disorders caused by RNA repeat expansions. The DM2 repeat expansion, r(CCUG)exp (where "exp" denotes expanded repeating nucleotides), is harbored in intron 1 of the CCHC-type zinc finger nucleic acid binding protein (CNBP). The expanded RNA repeat causes disease by a gain-of-function mechanism, sequestering various RNA-binding proteins including the pre-mRNA splicing regulator MBNL1. Sequestration of MBNL1 results in its loss-of-function and concomitant deregulation of the alternative splicing of its native substrates. Notably, this r(CCUG)exp causes retention of intron 1 in the mature CNBP mRNA. Herein, we report druglike small molecules that bind the structure adopted by r(CCUG)exp and improve DM2-associated defects. These small molecules were optimized from screening hits from an RNA-focused small-molecule library to afford a compound that binds r(CCUG)exp specifically and with nanomolar affinity, facilitates endogenous degradation of the aberrantly retained intron in which it is harbored, and rescues alternative splicing defects.
               
Click one of the above tabs to view related content.