LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Unraveling the Role of Linker Design in Proteolysis Targeting Chimeras.

Photo by edhoradic from unsplash

A current bottleneck in the development of proteolysis targeting chimeras (PROTACs) is the empirical nature of linker length structure-activity relationships (SARs). A multidisciplinary approach to alleviate the bottleneck is detailed… Click to show full abstract

A current bottleneck in the development of proteolysis targeting chimeras (PROTACs) is the empirical nature of linker length structure-activity relationships (SARs). A multidisciplinary approach to alleviate the bottleneck is detailed here. First, we examine four published synthetic approaches that have been developed to increase synthetic throughput. We then discuss advances in structural biology and computational chemistry that have led to successful rational PROTAC design efforts and give promise to de novo linker design in silico. Lastly, we present a model generated from a curated list of linker SARs studies normalized to reflect how linear linker length affects the observed degradation potency (DC50).

Keywords: linker design; targeting chimeras; chemistry; proteolysis targeting; linker

Journal Title: Journal of medicinal chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.