LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Discovery and Development of a Potent, Selective, and Orally Bioavailable CHK1 Inhibitor Candidate: 5-((4-((3-Amino-3-methylbutyl)amino)-5-(trifluoromethyl)pyrimidin-2-yl)amino)picolinonitrile.

Photo from wikipedia

Checkpoint kinase 1 (CHK1) plays an important role in the DNA damage response pathway, being a potential anti-cancer drug target. In this study, we used a strategy for trifluoromethyl substitution… Click to show full abstract

Checkpoint kinase 1 (CHK1) plays an important role in the DNA damage response pathway, being a potential anti-cancer drug target. In this study, we used a strategy for trifluoromethyl substitution to obtain orally bioavailable CHK1 inhibitors to overcome the limitations of lead compound 1, which can only be administered intravenously. After detailed investigation, we identified compound 6c as an oral CHK1 inhibitor, which demonstrated a considerably higher plasma exposure in mice. Compound 6c also showed good kinase selectivity. Moreover, it exhibited a significant antiproliferative effect in MV-4-11 cells singly and a synergistic effect in combination with gemcitabine in HT-29, A549, and RPMI-8226 cells. Additionally, compound 6c could inhibit tumor growth in the MV-4-11 xenograft mouse model. The combination of 6c and gemcitabine exhibited synergistic effect in the HT-29 xenograft mouse model. Thus, compound 6c was found to be a selective and oral potential anticancer CHK1 inhibitor.

Keywords: chk1; orally bioavailable; amino; chk1 inhibitor; bioavailable chk1

Journal Title: Journal of medicinal chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.