LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Discovery of Potent and Selective 2-(Benzylthio)pyrimidine-based DCN1-UBC12 Inhibitors for Anticardiac Fibrotic Effects.

DCN1, a co-E3 ligase, interacts with UBC12 and activates cullin-RING ligases (CRLs) by catalyzing cullin neddylation. Although DCN1 has been recognized as an important therapeutic target for human diseases, its… Click to show full abstract

DCN1, a co-E3 ligase, interacts with UBC12 and activates cullin-RING ligases (CRLs) by catalyzing cullin neddylation. Although DCN1 has been recognized as an important therapeutic target for human diseases, its role in the cardiovascular area remains unknown. Here, we first found that DCN1 was upregulated in isolated cardiac fibroblasts (CFs) treated by angiotensin (Ang) II and in mouse hearts after pressure overload. Then, structure-based optimizations for DCN1-UBC12 inhibitors were performed based on our previous work, yielding compound DN-2. DN-2 specifically targeted DCN1 at molecular and cellular levels as shown by molecular modeling studies, HTRF, cellular thermal shift and co-immunoprecipitation assays. Importantly, DN-2 effectively reversed Ang II-induced cardiac fibroblast activation, which was associated with the inhibition of cullin 3 neddylation. Our findings indicate a potentially unrecognized role of DCN1 inhibition for anticardiac fibrotic effects. DN-2 may be used as a lead compound for further development.

Keywords: dcn1 ubc12; anticardiac fibrotic; dcn1; discovery potent; ubc12 inhibitors; fibrotic effects

Journal Title: Journal of medicinal chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.