Identification of anti-SARS-CoV-2 compounds through traditional high-throughput screening (HTS) assays is limited by high costs and low hit rates. To address these challenges, we developed machine learning models to identify… Click to show full abstract
Identification of anti-SARS-CoV-2 compounds through traditional high-throughput screening (HTS) assays is limited by high costs and low hit rates. To address these challenges, we developed machine learning models to identify compounds acting via inhibition of the entry of SARS-CoV-2 into human host cells or the SARS-CoV-2 3-chymotrypsin-like (3CL) protease. The optimal classification models achieved good performance with area under the receiver operating characteristic curve (AUC-ROC) values of >0.78. Experimental validation showed that the best performing models increased the assay hit rate by 2.1-fold for viral entry inhibitors and 10.4-fold for 3CL protease inhibitors compared to those of the original drug repurposing screens. Twenty-two compounds showed potent (<5 μM) antiviral activities in a SARS-CoV-2 live virus assay. In conclusion, machine learning models can be developed and used as a complementary approach to HTS to expand compound screening capacities and improve the speed and efficiency of anti-SARS-CoV-2 drug discovery.
               
Click one of the above tabs to view related content.