LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Leveraging Structure-Based Drug Design to Identify Next-Generation MAT2A Inhibitors, Including Brain-Penetrant and Peripherally Efficacious Leads.

Photo by fakurian from unsplash

Inhibition of the S-adenosyl methionine (SAM)-producing metabolic enzyme, methionine adenosyltransferase 2A (MAT2A), has received significant interest in the field of medicinal chemistry due to its implication as a synthetic lethal… Click to show full abstract

Inhibition of the S-adenosyl methionine (SAM)-producing metabolic enzyme, methionine adenosyltransferase 2A (MAT2A), has received significant interest in the field of medicinal chemistry due to its implication as a synthetic lethal target in cancers with the deletion of the methylthioadenosine phosphorylase (MTAP) gene. Here, we report the identification of novel MAT2A inhibitors with distinct in vivo properties that may enhance their utility in treating patients. Following a high-throughput screening, we successfully applied the structure-based design lessons from our first-in-class MAT2A inhibitor, AG-270, to rapidly redesign and optimize our initial hit into two new lead compounds: a brain-penetrant compound, AGI-41998, and a potent, but limited brain-penetrant compound, AGI-43192. We hope that the identification and first disclosure of brain-penetrant MAT2A inhibitors will create new opportunities to explore the potential therapeutic effects of SAM modulation in the central nervous system (CNS).

Keywords: brain penetrant; mat2a; chemistry; mat2a inhibitors; structure based

Journal Title: Journal of medicinal chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.