LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

5-C-Branched Deoxynojirimycin: Strategy for Designing a 1-Deoxynojirimycin-Based Pharmacological Chaperone with a Nanomolar Affinity for Pompe Disease.

In recent years, the function of pharmacological chaperones as a "thermodynamic stabilizer" has been attracting attention in combination therapy. The coadministration of a pharmacological chaperone and recombinant human acid α-glucosidase… Click to show full abstract

In recent years, the function of pharmacological chaperones as a "thermodynamic stabilizer" has been attracting attention in combination therapy. The coadministration of a pharmacological chaperone and recombinant human acid α-glucosidase (rhGAA) leads to improved stability and maturation by binding to the folded state of the rhGAA and thereby promotes enzyme delivery. This study provides the first example of a strategy to design a high-affinity ligand toward lysosomal acid α-glucosidase (GAA) focusing on alkyl branches on 1-deoxynojirimycin (DNJ); 5-C-heptyl-DNJ produced a nanomolar affinity for GAA with a Ki value of 0.0047 μM, which is 13-fold more potent than DNJ. The protein thermal shift assay revealed that 10 μM 5-C-heptyl-DNJ increased the midpoint of the protein denaturation temperature (Tm) to 73.6 °C from 58.6 °C in the absence of the ligand, significantly improving the thermal stability of rhGAA. Furthermore, 5-C-heptyl-DNJ dose dependency increased intracellular GAA activities in Pompe patient's fibroblasts with the M519V mutation. The introduction of C5 alkyl branches on DNJ provides a new molecular strategy for pharmacological chaperone therapy for Pompe disease, which may lead to the development of higher-affinity and practically useful chaperones.

Keywords: affinity; strategy; pharmacological chaperone; nanomolar affinity; pompe disease

Journal Title: Journal of medicinal chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.