LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design and Synthesis of Dual EZH2/BRD4 Inhibitors to Target Solid Tumors.

Photo by edhoradic from unsplash

EZH2 inhibitors that prevent trimethylation of histone lysine 27 (H3K27) are often limited to the treatment of a subset of hematological malignancies. In most solid tumors, EZH2 inhibitors induce reciprocal… Click to show full abstract

EZH2 inhibitors that prevent trimethylation of histone lysine 27 (H3K27) are often limited to the treatment of a subset of hematological malignancies. In most solid tumors, EZH2 inhibitors induce reciprocal H3K27 acetylation that subsequently results in acquired drug resistance. The combination of EZH2 and BRD4 inhibitors to resensitize solid cancer cells to EZH2 inhibitors has proven to be effective, underlying the significance of developing dual inhibitors. Herein, we present the design, synthesis, and biological evaluation of first-in-class dual EZH2/BRD4 inhibitors. Our most promising compound, YM458, displays potent inhibitory activity against EZH2 and BRD4 and remarkable antiproliferative capacity against 11 solid cancer cell lines. Its in vivo therapeutic potential is validated in both lung cancer and pancreatic cancer xenograft tumor mice models, highlighting the potential of EZH2/BRD4 dual inhibitors to target a broad scope of EZH2 inhibitor-resistant solid tumors.

Keywords: design synthesis; ezh2; ezh2 brd4; brd4 inhibitors; solid tumors

Journal Title: Journal of medicinal chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.