LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Piezo-Type Mechanosensitive Ion Channel Component 1 (Piezo1): A Promising Therapeutic Target and Its Modulators.

Photo by kellysikkema from unsplash

Piezo1 is a member of the mechanosensitive piezo ion channel family, which transduces various mechanical stimulations into electrochemical signals. Piezo1 is closely implicated in different physiological processes ranging from erythrocyte… Click to show full abstract

Piezo1 is a member of the mechanosensitive piezo ion channel family, which transduces various mechanical stimulations into electrochemical signals. Piezo1 is closely implicated in different physiological processes ranging from erythrocyte volume homeostasis to lymphatic vessel formation and bone homeostasis. Aberrant Piezo1 functions caused by gain-of-function or loss-of-function mutations are associated with various pathological conditions. Due to the significant contribution on the recognition of Piezo ion channels for sensing mechanical stress, Ardem Patapoutian received the 2021 Nobel Prize in Physiology or Medicine (jointly). Strategies of targeting and modulating Piezo1 have shown potential to produce significant therapeutic effects, thus validating Piezo1 as a promising drug target for diseases. In this Perspective, we review the cryo-EM structure, mechanogating mechanism, and physiological profiles of Piezo1, together with the latest advances in the development of its modulators. Limitations and challenges as well as future development of Piezo1 modulators are discussed as well.

Keywords: piezo1 promising; ion channel; piezo type; ion; piezo1; target

Journal Title: Journal of medicinal chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.