LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Copper(II) Complexes of Halogenated Quinoline Schiff Base Derivatives Enabled Cancer Therapy through Glutathione-Assisted Chemodynamic Therapy and Inhibition of Autophagy Flux.

Photo from wikipedia

Twelve new complexes Cu(L1)2-Cu(L12)2 were designed and synthesized to improve their chemotherapeutic properties. They showed considerable antiproliferative activity against T24 cancer cells but lower cytotoxicity to human normal cells HL-7702… Click to show full abstract

Twelve new complexes Cu(L1)2-Cu(L12)2 were designed and synthesized to improve their chemotherapeutic properties. They showed considerable antiproliferative activity against T24 cancer cells but lower cytotoxicity to human normal cells HL-7702 and WI-38. A mechanism study indicated that Cu(L4)2 and Cu(L10)2 were reduced to Fenton-like Cu+ by glutathione depletion, and the resulting Cu+ catalyzed the generation of highly toxic hydroxyl radicals from excess H2O2. Simultaneously, Cu(L4)2 and Cu(L10)2 could decrease the catalase activity to restrain H2O2 transfer to H2O for enhanced chemodynamic therapy (CDT). These induced mitochondrial dysfunctions and endoplasmic reticulum stress to induce T24 cell apoptosis. In addition, Cu(L4)2 and Cu(L10)2 inhibited autophagy flux to promote cell apoptosis. Cu(L4)2 and Cu(L10)2 demonstrated strong tumor inhibition ability in the T24 xenograft model. Moreover, Cu(L10)2 showed higher antitumor activity and a better safety profile than the CDT agent Cu1. Cu(L10)2 exhibited excellent pharmacokinetic properties. Collectively, Cu(L4)2 and Cu(L10)2 could be developed as potential CDT candidates for cancer treatment.

Keywords: l10; autophagy flux; therapy; chemodynamic therapy; glutathione; cancer

Journal Title: Journal of medicinal chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.