LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Structural Fine-Tuning on Chelate Stability and Liver Uptake of Anionic MRI Contrast Agents.

Photo from wikipedia

The purpose of this study is to assess the physicochemical properties and MRI diagnostic efficacy of two newly synthesized 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-type Gd chelates, Gd-SucL and Gd-GluL, with an asymmetric… Click to show full abstract

The purpose of this study is to assess the physicochemical properties and MRI diagnostic efficacy of two newly synthesized 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-type Gd chelates, Gd-SucL and Gd-GluL, with an asymmetric α-substituted pendant arm as potential hepatocyte-specific magnetic resonance imaging contrast agents (MRI CAs). Our findings show that fine conformational changes in the chelating arm affect the in vivo pharmacokinetic behavior of the MRI CA, and that a six-membered chelating substituent of Gd-SucL is more advantageous in this system to avoid unwanted interactions with endogenous species. Gd-SucL exhibited a general DOTA-like chelate stability trend, indicating that all chelating arms retain coordination bonding. Finally, the in vivo diagnostic efficacy of highly stable Gd-SucL as a potential hepatocyte-specific MRI CA was evaluated using T1-weighted MR imaging on an orthotopic hepatocarcinoma model.

Keywords: effect structural; mri; chelate stability; contrast agents

Journal Title: Journal of medicinal chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.