LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exploring Degradation of Mutant and Wild-Type Epidermal Growth Factor Receptors Induced by Proteolysis-Targeting Chimeras.

Photo from wikipedia

Several epidermal growth factor receptor (EGFR) proteolysis-targeting chimeras (PROTACs), including MS39 and MS154 developed by us, have been reported to effectively degrade the mutant but not the wild-type (WT) EGFR.… Click to show full abstract

Several epidermal growth factor receptor (EGFR) proteolysis-targeting chimeras (PROTACs), including MS39 and MS154 developed by us, have been reported to effectively degrade the mutant but not the wild-type (WT) EGFR. However, the mechanism underlying the selectivity in degrading the mutant over the WT EGFR has not been elucidated. Here, we report comprehensive structure-activity relationship studies that led to the discovery of two novel EGFR degraders, 31 (MS9449) and 72 (MS9427), and mechanistic studies of these EGFR degraders. Compounds 31 and 72 selectively degraded the mutant but not the WT EGFR through both ubiquitination/proteasome and autophagy/lysosome pathways. Interestingly, we found that the mutant but not the WT EGFR can effectively form EGFR-PROTAC-E3 ligase ternary complexes. Furthermore, we found that PI3K inhibition sensitized WT EGFR to PROTAC-induced degradation and combination treatment with a PI3K inhibitor enhanced antiproliferation activities of EGFR degraders in cancer cells harboring WT EGFR, providing a potential therapeutic strategy for patients with WT EGFR overexpression.

Keywords: epidermal growth; growth factor; mutant wild; egfr; proteolysis targeting; targeting chimeras

Journal Title: Journal of medicinal chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.