LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structure-Aided Design, Synthesis, and Biological Evaluation of Potent and Selective Non-Nucleoside Inhibitors Targeting Protein Arginine Methyltransferase 5.

Photo by nci from unsplash

PRMT5 is a major type II protein arginine methyltransferase and plays important roles in diverse cellular processes. Overexpression of PRMT5 is implicated in various types of cancer. Many efforts have… Click to show full abstract

PRMT5 is a major type II protein arginine methyltransferase and plays important roles in diverse cellular processes. Overexpression of PRMT5 is implicated in various types of cancer. Many efforts have been made to develop potent and selective PRMT5 inhibitors, the most potent of which is usually derived from nucleoside structures. Here, we designed a novel series of non-nucleoside PRMT5 inhibitors through the structure-aided drug design approach. SAR exploration and metabolic stability optimization led to the discovery of compound 41 as a potent PRMT5 inhibitor with good selectivity. Additionally, compound 41 exerted antiproliferative effects against A375 cells by inducing apoptosis and potently inhibited the methyltransferase activity of PRMT5 in cells. Moreover, it showed attractive pharmacokinetic properties and markedly suppressed the tumor growth in an A375 tumor xenograft model. These results clearly indicate that 41 is a highly potent and selective non-nucleoside PRMT5 inhibitor.

Keywords: protein arginine; non nucleoside; arginine methyltransferase; potent selective

Journal Title: Journal of medicinal chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.