LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Macrocyclization of Quinazoline-Based EGFR Inhibitors Leads to Exclusive Mutant Selectivity for EGFR L858R and Del19.

Photo by arthurlfranklin from unsplash

Activating mutations in the epidermal growth factor receptor (EGFR) are frequent oncogenic drivers of non-small-cell lung cancer (NSCLC). The most frequent alterations in EGFR are short in-frame deletions in exon… Click to show full abstract

Activating mutations in the epidermal growth factor receptor (EGFR) are frequent oncogenic drivers of non-small-cell lung cancer (NSCLC). The most frequent alterations in EGFR are short in-frame deletions in exon 19 (Del19) and the missense mutation L858R, which both lead to increased activity and sensitization of NSCLC to EGFR inhibition. The first approved EGFR inhibitors used for first-line treatment of NSCLC, gefitinib and erlotinib, are quinazoline-based. However, both inhibitors have several known off-targets, and they also potently inhibit wild-type (WT) EGFR, resulting in side effects. Here, we applied a macrocyclic strategy on a quinazoline-based scaffold as a proof-of-concept study with the goal of increasing kinome-wide selectivity of this privileged inhibitor scaffold. Kinome-wide screens and SAR studies yielded 3f, a potent inhibitor for the most common EGFR mutation (EGFR Del19: 119 nM) with selectivity against the WT receptor (EGFR: >10 μM) and the kinome.

Keywords: macrocyclization quinazoline; based egfr; egfr inhibitors; quinazoline; quinazoline based; selectivity

Journal Title: Journal of medicinal chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.