LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design and Structural Optimization of Orally Bioavailable SOS1 Inhibitors for the Treatment of KRAS-Driven Carcinoma.

Photo from wikipedia

KRAS mutations (G12C, G12D, etc.) are implicated in the oncogenesis and progression of many refractory cancers. Son of sevenless homolog 1 (SOS1) is a key regulator of KRAS to modulate… Click to show full abstract

KRAS mutations (G12C, G12D, etc.) are implicated in the oncogenesis and progression of many refractory cancers. Son of sevenless homolog 1 (SOS1) is a key regulator of KRAS to modulate KRAS from inactive to active states. Herein, we disclosed efficacy-improving tetra-cyclic quinazoline derivatives as an enhanced scaffold for inhibiting the SOS1-KRAS interaction. Compound 37, which conjugated 1-carbonitrile-cyclopropane to tetra-cyclic quinazoline, showed a twofold higher oral drug exposure and 2.5-fold longer half-life than BI-3406 in CD-1 mouse plasma. In a Mia-paca-2 xenograft model, 37 administrated alone inhibited tumor growth by 71%. Preclinical investigations demonstrated that 37 had a limited inhibition of CYP and hERG. Overall, our studies showed that 37 was a promising drug candidate for treatment of KRAS-driven cancer.

Keywords: optimization orally; design structural; structural optimization; kras driven; treatment kras

Journal Title: Journal of medicinal chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.