LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design, Synthesis, and Biological Evaluation of a Potent Dual EZH2-BRD4 Inhibitor for the Treatment of Some Solid Tumors.

Photo from wikipedia

Enhancer of zeste homolog 2 (EZH2) mediates the trimethylation of histone 3 lysine 27 (H3K27) to promote gene silencing. Inhibition of EZH2 is a viable strategy for cancer treatment; however,… Click to show full abstract

Enhancer of zeste homolog 2 (EZH2) mediates the trimethylation of histone 3 lysine 27 (H3K27) to promote gene silencing. Inhibition of EZH2 is a viable strategy for cancer treatment; however, only a small subset of hematological malignancies are sensitive to small-molecule EZH2 inhibitors. EZH2 inhibitors cause H3K27 acetylation in most solid tumors, leading to drug resistance. Bromodomain-containing protein 4 (BRD4) inhibitors were reported to enhance the sensitivity of solid tumors to EZH2 inhibitors. Thus, we designed and evaluated a series of dual EZH2-BRD4 inhibitors. ZLD-2, the most promising compound, exhibited potent inhibitory activity against EZH2 and BRD4. Compared to the EZH2 inhibitor GSK126, ZLD-2 displayed potent antiproliferation activity against breast, lung, bladder, and pancreatic cancer cells. In vivo, ZLD-2 exhibited antitumor activity in a BxPC-3 mouse xenograft model, whereas GSK126 promoted tumor growth. Thus, ZLD-2 may be a lead compound for treating solid tumors.

Keywords: ezh2; ezh2 brd4; solid tumors; treatment; dual ezh2

Journal Title: Journal of medicinal chemistry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.