Highly functionalized skeletons of macrolide natural products gain access to rare spatial arrangements of atoms, where changes in stereochemistry can have a profound impact on the structure and function. Spliceosome… Click to show full abstract
Highly functionalized skeletons of macrolide natural products gain access to rare spatial arrangements of atoms, where changes in stereochemistry can have a profound impact on the structure and function. Spliceosome modulators present a unique consensus motif, with the majority targeting a key interface within the SF3B spliceosome complex. Our recent preparative-scale synthetic campaign of 17S-FD-895 provided unique access to stereochemical analogues of this complex macrolide. Here, we report on the preparation and systematic activity evaluation of multiple FD-895 analogues. These studies examine the effects of modifications at specific stereocenters within the molecule and highlight future directions for medicinal chemical optimization of spliceosome modulators.
               
Click one of the above tabs to view related content.