LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ARE-PROTACs Enable Co-degradation of an Nrf2-MafG Heterodimer.

Photo from wikipedia

Proteolysis-targeting chimera (PROTAC) technology has emerged as a potential strategy to degrade "undruggable" proteins in recent years. Nrf2, an aberrantly activated transcription factor in cancer, is generally considered undruggable as… Click to show full abstract

Proteolysis-targeting chimera (PROTAC) technology has emerged as a potential strategy to degrade "undruggable" proteins in recent years. Nrf2, an aberrantly activated transcription factor in cancer, is generally considered undruggable as lacking active sites or allosteric pockets. Here, we constructed the chimeric molecule C2, which consists of an Nrf2-binding element and a CRBN ligand, as a first-in-class Nrf2 degrader. Surprisingly, C2 was found to selectively degrade an Nrf2-MafG heterodimer simultaneously via the ubiquitin-proteasome system. C2 impeded Nrf2-ARE transcriptional activity significantly and improved the sensitivity of NSCLC cells to ferroptosis and therapeutic drugs. The degradation character of ARE-PROTACs suggests that the PROTAC hijacking the transcription element of TFs could achieve co-degradation of the transcription complex.

Keywords: nrf2 mafg; degradation; mafg heterodimer; nrf2

Journal Title: Journal of medicinal chemistry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.