LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Persistent Degradation of HER2 Protein by Hybrid nanoPROTAC for Programmed Cell Death.

Photo by john_cameron from unsplash

Proteolysis-targeting chimera (PROTAC) has emerged as a promising strategy for degrading proteins of interest. Peptide-based PROTACs offer several advantages over small-molecule-based PROTACs, such as high specificity, low toxicity, and large… Click to show full abstract

Proteolysis-targeting chimera (PROTAC) has emerged as a promising strategy for degrading proteins of interest. Peptide-based PROTACs offer several advantages over small-molecule-based PROTACs, such as high specificity, low toxicity, and large protein-protein interaction surfaces. However, peptide-based PROTACs have several intrinsic shortcomings that strongly limit their application including poor cell permeability and low stability and potency. Herein, we designed a nanosized hybrid PROTAC (GNCTACs) to target and degrade human epidermal growth factor receptor 2 (HER2) in tumor cells. Gold nanoclusters (GNCs) were utilized to connect HER2-targeting peptides and cereblon (CRBN)-targeting ligands. GNCTACs could overcome the intrinsic barriers of peptide-based PROTACs, efficiently delivering HER2-targeting peptides in the cytoplasm and protecting them from degradation. Furthermore, a fasting-mimicking diet was applied to enhance the cellular uptake and proteasome activity. Consequently, more than 95% of HER2 in SKBR3 cells was degraded by GNCTACs, and the degradation lasted for at least 72 h, showing a catalytic-like reaction.

Keywords: peptide based; cell; her2; based protacs; degradation; protein

Journal Title: Journal of medicinal chemistry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.