LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transformation of a Dopamine D2 Receptor Agonist to Partial Agonists as Novel Antipsychotic Agents.

Photo from wikipedia

Designed ligands of G protein-coupled receptors can exert a spectrum of modulating effects, varying from full agonists and partial agonists to antagonists and inverse agonists. For the dopamine D2 receptor… Click to show full abstract

Designed ligands of G protein-coupled receptors can exert a spectrum of modulating effects, varying from full agonists and partial agonists to antagonists and inverse agonists. For the dopamine D2 receptor (D2R), partial agonist activity is the pharmacological feature of the third-generation antipsychotics, including aripiprazole, brexpiprazole, and cariprazine. Started from a benzofuran-derived D2R full agonist O4LE6 (4), which was identified using a structure-based method by us in previous studies, a series of D2R partial agonists were designed and synthesized by introducing different tail groups. Among them, compound 10b showed excellent activity in D2R pharmacological assays. Further optimizations using a structural rigidification approach led to the discovery of brain-penetrant compounds 29c and 29d, which exhibited potent antipsychotic effects in the mouse hyperlocomotion model. Compound 29c also showed excellent drug-like pharmacokinetic properties in rats and qualifies as an antipsychotic agent that is worth further evaluations.

Keywords: partial agonists; dopamine receptor; agonist partial; transformation dopamine; receptor agonist

Journal Title: Journal of medicinal chemistry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.