LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lead Optimization Generates CYP11B1 Inhibitors of Pyridylmethyl Isoxazole Type with Improved Pharmacological Profile for the Treatment of Cushing's Disease.

Photo from wikipedia

Cushing's disease, characterized by elevated plasma cortisol levels, can be controlled by inhibition of 11β-hydroxylase (CYP11B1). The previously identified selective and potent CYP11B1 inhibitor 5-((5-methylpyridin-3-yl)methyl)-2-phenylpyridine Ref 7 (IC50= 2 nM)… Click to show full abstract

Cushing's disease, characterized by elevated plasma cortisol levels, can be controlled by inhibition of 11β-hydroxylase (CYP11B1). The previously identified selective and potent CYP11B1 inhibitor 5-((5-methylpyridin-3-yl)methyl)-2-phenylpyridine Ref 7 (IC50= 2 nM) exhibited promutagenic potential as well as very low oral bioavailability in rats (F = 2%) and was therefore modified to overcome these drawbacks. Successful lead optimization resulted in similarly potent and selective 5-((5-methoxypyridin-3-yl)methyl)-3-phenylisoxazole 25 (IC50 = 2 nM, 14-fold selectivity over CYP11B2), exhibiting a superior pharmacological profile with no mutagenic potential. Furthermore, compound 25 inhibited rat CYP11B1 (IC50 = 2 μM) and showed a high oral bioavailability (F = 50%) and sufficient plasma concentrations in rats, providing an excellent starting point for a proof-of-principle study.

Keywords: cushing disease; pharmacological profile; lead optimization; optimization generates

Journal Title: Journal of medicinal chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.