An impaired signaling capacity of the serotonin (5-HT) 5-HT2C receptor (5-HT2CR) has been implicated in the neurobehavioral processes that promote relapse vulnerability in cocaine use disorder (CUD). Restoration of the… Click to show full abstract
An impaired signaling capacity of the serotonin (5-HT) 5-HT2C receptor (5-HT2CR) has been implicated in the neurobehavioral processes that promote relapse vulnerability in cocaine use disorder (CUD). Restoration of the diminished 5-HT2CR signaling through positive allosteric modulation presents a novel therapeutic approach. Several new molecules with the 4-alkylpiperidine-2-carboxamide scaffold were designed, synthesized, and pharmacologically evaluated, leading to the discovery of selective 5-HT2CR positive allosteric modulators (PAMs). Compound 16 (CYD-1-79) potentiated 5-HT-evoked intracellular calcium release in cells stably expressing the human 5-HT2CR but not the 5-HT2AR cells. A topographically distinct allosteric site was identified based on the newly solved 5-HT2CR structure. Compound 16 modulated 5-HT2CR-mediated spontaneous ambulation, partially substituted for the training dose of the 5-HT2CR agonist WAY163909, synergized with a low dose of WAY163909 to substitute fully for the stimulus effects of WAY163909, and attenuated relapse vulnerability as assessed in a rodent self-administration model, indicating its therapeutic promise for CUD.
               
Click one of the above tabs to view related content.