LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design and Synthesis of Potent HIV-1 Protease Inhibitors Containing Bicyclic Oxazolidinone Scaffold as the P2 Ligands: Structure-Activity Studies and Biological and X-ray Structural Studies.

Photo by charlesdeluvio from unsplash

We have designed, synthesized, and evaluated a new class of potent HIV-1 protease inhibitors with novel bicyclic oxazolidinone derivatives as the P2 ligand. We have developed an enantioselective synthesis of… Click to show full abstract

We have designed, synthesized, and evaluated a new class of potent HIV-1 protease inhibitors with novel bicyclic oxazolidinone derivatives as the P2 ligand. We have developed an enantioselective synthesis of these bicyclic oxazolidinones utilizing a key o-iodoxybenzoic acid mediated cyclization. Several inhibitors displayed good to excellent activity toward HIV-1 protease and significant antiviral activity in MT-4 cells. Compound 4k has shown an enzyme Ki of 40 pM and antiviral IC50 of 31 nM. Inhibitors 4k and 4l were evaluated against a panel of highly resistant multidrug-resistant HIV-1 variants, and their fold-changes in antiviral activity were similar to those observed with darunavir. Additionally, two X-ray crystal structures of the related inhibitors 4a and 4e bound to HIV-1 protease were determined at 1.22 and 1.30 Å resolution, respectively, and revealed important interactions in the active site that have not yet been explored.

Keywords: potent hiv; protease; bicyclic oxazolidinone; protease inhibitors; hiv protease; activity

Journal Title: Journal of medicinal chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.