LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamic Generation of G-Quadruplex DNA Ligands by Target-Guided Combinatorial Chemistry on a Magnetic Nanoplatform.

Photo by diana_pole from unsplash

Dynamic combinatorial chemistry (DCC) has emerged as a promising strategy for template-driven selection of high-affinity ligands for biological targets from equilibrating combinatorial libraries. However, only a few examples using disulfide-exchange-based… Click to show full abstract

Dynamic combinatorial chemistry (DCC) has emerged as a promising strategy for template-driven selection of high-affinity ligands for biological targets from equilibrating combinatorial libraries. However, only a few examples using disulfide-exchange-based DCC are reported for nucleic acid targets. Herein, we have demonstrated that gold-coated magnetic nanoparticle-conjugated DNA targets can be used as templates for dynamic selection of ligands from an imine-based combinatorial library. The implementation of DCC using DNA nanotemplates enables efficient identification of the lead compounds, from the dynamic combinatorial library via magnetic decantation. It further allows quick separation of DNA nanotemplates for reuse in DCC reactions. The identified lead compound exhibits significant quadruplex versus duplex DNA selectivity and suppresses promoter activity of c-MYC gene that contains G-quadruplex DNA forming sequence in the upstream promoter region. Further cellular experiments indicated that the lead compound is able to permeate into cell nuclei and trigger a DNA damage response in cancer cells.

Keywords: generation quadruplex; dna; combinatorial chemistry; quadruplex dna; dynamic generation; chemistry

Journal Title: Journal of medicinal chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.