LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Discovery of Novel Pyrazolo-Pyridone DCN1 Inhibitors Controlling Cullin Neddylation.

Photo by diana_pole from unsplash

Chemical control of cullin neddylation is attracting increased attention based largely on the successes of the NEDD8-activating enzyme (E1) inhibitor Pevonedistat. Recently reported chemical probes enable selective and time-dependent inhibition… Click to show full abstract

Chemical control of cullin neddylation is attracting increased attention based largely on the successes of the NEDD8-activating enzyme (E1) inhibitor Pevonedistat. Recently reported chemical probes enable selective and time-dependent inhibition of downstream members of the neddylation tri-enzymatic cascade including the co-E3, DCN1. In this work, we report the optimization of a novel class of small molecule inhibitors of the DCN1-UBE2M interaction. Rational X-ray co-structure enabled optimization afforded a 25-fold improvement in potency relative to the initial screening hit. The potency gains are largely attributed to additional hydrophobic interactions mimicking the N-terminal acetyl group that drives binding of UBE2M to DCN1. The compounds inhibit the protein-protein interaction, block NEDD8 transfer in biochemical assays, engage DCN1 in cells, and selectively reduce the steady-state neddylation of Cul1 and Cul3 in two squamous carcinoma cell lines harboring DCN1 amplification.

Keywords: pyrazolo pyridone; cullin neddylation; discovery novel; dcn1; novel pyrazolo

Journal Title: Journal of medicinal chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.