LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cadinane Sesquiterpenoids and Their Glycosides from Alangium chinense That Inhibit Spontaneous Calcium Oscillations.

Photo by abstralofficial from unsplash

Nine new cadinane sesquiterpenoids, alanenses A-I (1-9), were isolated from the leaves of Alangium chinense together with three previously reported analogues (10-12). The structures of these molecules were elucidated by… Click to show full abstract

Nine new cadinane sesquiterpenoids, alanenses A-I (1-9), were isolated from the leaves of Alangium chinense together with three previously reported analogues (10-12). The structures of these molecules were elucidated by interpretation of spectroscopic and spectrometric data. Absolute configurations were established by the comparison of experimental and calculated ECD data, chemical degradation studies for sugar moieties, and a single-crystal X-ray diffraction analysis. Compounds 1 and 2 were isolated as racemates, and enantiopurification was achieved by chiral HPLC. Compounds 3-5 are glycosylated cadinanes bearing a β-d-glucose unit, while compounds 6-9 incorporate a hydroxymethyl group in either the free form or additional ring fusion. The structure of compound 11 was originally misassigned and later revised using additional NMR data. The corrected structure is here supported by X-ray single-crystal analysis. Compounds 1 and 2 inhibit spontaneous calcium channel oscillations at low micromolar concentrations.

Keywords: inhibit spontaneous; cadinane sesquiterpenoids; alangium chinense; sesquiterpenoids glycosides; spontaneous calcium

Journal Title: Journal of natural products
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.