LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Selective Inhibition of Organic Cation Transporter 1 by Benzoylpaeoniflorin Attenuates Hepatic Lipid Accumulation through AMPK Activation.

Photo by simon_611 from unsplash

Organic cation transporter 1 (OCT1) is a liver-specific transporter and plays an essential role in drug disposition and hepatic lipid metabolism. Therefore, inhibition of OCT1 may not only lead to… Click to show full abstract

Organic cation transporter 1 (OCT1) is a liver-specific transporter and plays an essential role in drug disposition and hepatic lipid metabolism. Therefore, inhibition of OCT1 may not only lead to drug-drug interactions but also represent a potential therapy for fatty liver diseases. In this study, we systematically investigated the inhibitory effect of 200 natural products on OCT1-mediated uptake of 4,4-dimethylaminostyryl-N-methylpyridinium (ASP+) and identified 10 potent OCT1 inhibitors. The selectivity of these inhibitors over OCT2 was evaluated using both in vitro uptake assays and in silico molecular docking analyses. Importantly, benzoylpaeoniflorin was identified as the most potent OCT1 inhibitor with the highest selectivity over OCT2. Additionally, benzoylpaeoniflorin prevented lipid accumulation in hepatocytes, with concomitant activation of AMPK and down-regulation of lipogenic genes, such as acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN). To conclude, our findings are of significant value in understanding OCT1-based natural product-drug interactions and provide a natural source of OCT1 inhibitors which may hold promise for treating fatty liver diseases.

Keywords: hepatic lipid; transporter; lipid accumulation; cation transporter; organic cation

Journal Title: Journal of natural products
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.