LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Coculture of Two Developmental Stages of a Marine-Derived Aspergillus alliaceus Results in the Production of the Cytotoxic Bianthrone Allianthrone A.

Photo by kattrinnaaaaa from unsplash

The genetically encoded, small-molecule chemical diversity of filamentous fungi is still largely unexplored and represents an attractive source for the discovery of new compounds. Here we report the production of… Click to show full abstract

The genetically encoded, small-molecule chemical diversity of filamentous fungi is still largely unexplored and represents an attractive source for the discovery of new compounds. Here we report the production of new chlorinated bianthrones from coculture of two different developmental stages, or morphs, of a marine alga-derived Aspergillus alliaceus (teleomorph: Petromyces alliaceus) strain. The vegetative stage (asexual morph) can be separated from the morph that switched to sexual development (sclerotial morph); both produce distinct secondary metabolite patterns. Ochratoxin (1) was mainly found in the monoculture of the sclerotial morph, while the anthraquinone pigment nalgiovensin (2) was produced by the asexual morph. Surprisingly, combining cultures from both developmental stages in a coculture experiment changed the metabolite profile drastically. The chlorinated congener nalgiolaxin (3) was abundant, and newly produced bianthrones were found. Allianthrone A (4) and its two diastereomers [allianthrones B (5) and C (6)] were isolated, and the new structures were determined by extensive NMR spectroscopic analysis, supported by optical properties and X-ray crystallography. All metabolites were tested in antibiotic and cytotoxicity assays, and allianthrone A (4) showed weak cytotoxic activity against the HCT-116 colon cancer and SK-Mel-5 melanoma cell lines.

Keywords: production; coculture two; morph; developmental stages; derived aspergillus; aspergillus alliaceus

Journal Title: Journal of natural products
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.