LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Emission State Structure and Linewidth Broadening Mechanisms in Type-II CdSe/CdTe Core–Crown Nanoplatelets: A Combined Theoretical–Single Nanocrystal Optical Study

Photo from wikipedia

Type-II heterostructures are key elementary components in optoelectronic, photovoltaic, and quantum devices. The staggered band alignment of materials leads to the stabilization of indirect excitons (IXs), i.e., correlated electron–hole pairs… Click to show full abstract

Type-II heterostructures are key elementary components in optoelectronic, photovoltaic, and quantum devices. The staggered band alignment of materials leads to the stabilization of indirect excitons (IXs), i.e., correlated electron–hole pairs experiencing spatial separation with novel properties, boosting optical gain and promoting strategies for the design of information storage, charge separation, or qubit manipulation devices. Planar colloidal CdSe/CdTe core–crown type-II nested structures, grown as nanoplatelets (NPLs), are the focus of the present work. By combining low temperature single NPL measurements and electronic structure calculations, we gain insights into the mechanisms impacting the emission properties. We are able to probe the sensitivity of the elementary excitations (IXs, trions) with respect to the appropriate structural parameter (core size). Neutral IXs, with binding energies reaching 50 meV, are shown to dominate the highly structured single NPL emission. The large broadening linewidth that persists at the single NPL level clearly results from strong exciton–LO phonon coupling (Eph = 21 meV) whose strength is poorly influenced by trapped charges. The spectral jumps (≈10 meV) in the photoluminescence recorded as a function of time are explained by the fluctuations in the IX electrostatic environment considering fractional variations (≈0.2 e) of the noncompensated charge defects.

Keywords: cdte core; cdse cdte; core; core crown; emission

Journal Title: Journal of Physical Chemistry C
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.