Doping with Ti enhances the electron conductivity and photoelectrochemical properties in hematite (α-Fe2O3) photoanodes with respect to those of undoped hematite photoanodes. However, the optimal doping level is unknown. This… Click to show full abstract
Doping with Ti enhances the electron conductivity and photoelectrochemical properties in hematite (α-Fe2O3) photoanodes with respect to those of undoped hematite photoanodes. However, the optimal doping level is unknown. This work examined the influence of the Ti doping level on the photoelectrochemical properties of thin-film (∼50-nm) hematite photoanodes. The films were deposited by pulsed laser deposition (PLD) on glass substrates coated with transparent electrodes (fluorinated tin oxide, FTO) from Ti-doped Fe2O3 targets with different Ti concentrations: 0 (undoped), 0.25, 0.8, 1, and 7 cation %. The film thicknesses, morphologies, microstructures, and optical properties were nearly the same for all of the photoanodes, thereby enabling systematic comparison of the effect of the doping level without spurious side effects related to morphological variations. The photoelectrochemical performances of all of the Ti-doped photoanodes were considerably higher than that of the undoped photoanode. Among the dop...
               
Click one of the above tabs to view related content.