LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of Self-Trapped Excitons on Blue Photoluminescence in TiO2 Nanorods on Chemically Etched Si Pyramids

Photo by kellysikkema from unsplash

Temperature-dependent photoluminescence (PL) of titanium oxide (TiO2) shows an evolution of blue emission when exposed to 50 keV Ar+ ions. The origin of observed PL has been examined by X-ray… Click to show full abstract

Temperature-dependent photoluminescence (PL) of titanium oxide (TiO2) shows an evolution of blue emission when exposed to 50 keV Ar+ ions. The origin of observed PL has been examined by X-ray absorption near-edge spectroscopy (XANES) at Ti-K,L and O-K edges, revealing the reduction of ligand field splitting owing to the formation of oxygen vacancies (OVs) by destroying TiO6 octahedral symmetry. Detailed PL and XANES analyses suggest that the fluence (ions/cm2) dependent increase in OVs not only boosts the conduction electrons but also increases the density of holes in localized self-trapped exciton (STE) states near the valence band. Based on these observations, we propose a model in which doped conduction electrons are recombining radiatively with the holes in STE states for blue light emission.

Keywords: tio2; impact self; excitons blue; trapped excitons; self trapped; photoluminescence

Journal Title: Journal of Physical Chemistry C
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.