LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Initial-Stage Oxidation of Ni3Al(100) and -(110) from Ab Initio Thermodynamics

Photo from wikipedia

The microscopic mechanisms of the initial-stage oxidation of the Ni3Al(100) and Ni3Al(110) surfaces are comparatively studied using ab initio calculations based on density-functional theory and thermodynamics considerations. The surface energies… Click to show full abstract

The microscopic mechanisms of the initial-stage oxidation of the Ni3Al(100) and Ni3Al(110) surfaces are comparatively studied using ab initio calculations based on density-functional theory and thermodynamics considerations. The surface energies of the two surfaces as functions of aluminum and oxygen chemical potentials are constructed and show that the formation of any antisite defects is not favorable at the Ni3Al(100) surface, whereas Al antisite defects are favorable at the Ni3Al(110) surface. The surface phase diagrams of the Ni3Al(100) and -(110) surfaces with different antisite defects and at the various oxygen coverages are determined. These results show that oxygen adsorption enhances Al surface segregation at the initial stage of oxidation for both surfaces and that the Ni3Al(100) surface is thermodynamically more favored to oxidize completely at a lower oxygen coverage than the Ni3Al(110) surface.

Keywords: ni3al 100; initial stage; stage oxidation; thermodynamics

Journal Title: Journal of Physical Chemistry C
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.