LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Morphology and Electronic Properties of N,N′-Ditridecylperylene-3,4,9,10-tetracarboxylic Diimide Layered Aggregates: From Structural Predictions to Charge Transport

Photo by kellysikkema from unsplash

The morphology of layered aggregates of N,N′-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (PTCDI-C13), a prototypical n-type semiconductor for organic electronic devices, was investigated by molecular dynamics and corroborated by metadynamics simulations. Calculations were targeted… Click to show full abstract

The morphology of layered aggregates of N,N′-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (PTCDI-C13), a prototypical n-type semiconductor for organic electronic devices, was investigated by molecular dynamics and corroborated by metadynamics simulations. Calculations were targeted to ordered 3D aggregates, differing in the relative orientation of the perylene π-cores and on the degree of interdigitation among contiguous planar layers. Our simulations indicated the noninterdigitated cofacial structure as the thermodynamically most stable form of ordered PTCDI-C13 aggregates, in both bulk crystals and bilayers. Other structures, however, may occur in the growth of PTCDI-C13 under kinetic conditions. Density functional theory calculations were also performed to evaluate the relative total electronic energy of 3D crystals of PTCDI-C13 and related transfer integrals, correlating structure with potential charge-transport properties in devices. The most stable ordered aggregated form of PTCDI-C13 exhibit...

Keywords: tetracarboxylic diimide; layered aggregates; charge transport; morphology; ptcdi c13; ditridecylperylene tetracarboxylic

Journal Title: Journal of Physical Chemistry C
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.