LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Using Heterodyne-Detected Electronic Sum Frequency Generation to Probe the Electronic Structure of Buried Interfaces

Photo by kellysikkema from unsplash

Organic semiconductors (OSCs) are attractive optoelectronic materials due to their high extinction coefficients, processing advantages, and ability to display unique phenomena such as singlet exciton fission. However, employing OSCs as… Click to show full abstract

Organic semiconductors (OSCs) are attractive optoelectronic materials due to their high extinction coefficients, processing advantages, and ability to display unique phenomena such as singlet exciton fission. However, employing OSCs as active electronic components remains challenging as this necessitates forming junctions between OSCs and other materials. Such junctions can distort the OSC’s electronic properties, complicating the transfer of energy and charge across them. To investigate these junctions, our group has employed the interface-selective technique, electronic sum frequency generation spectroscopy (ESFG), yet one complication in applying ESFG to thin OSC films is they necessarily have two interfaces that can each produce signals. In a conventional ESFG measurement, information regarding the phase of the ESFG signal is lost. However, this information can be recovered with heterodyne detection techniques (HD-ESFG). Here, we present experiments and model calculations that illustrate some key adva...

Keywords: frequency generation; sum frequency; electronic sum

Journal Title: Journal of Physical Chemistry C
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.