To aid the development of Pb-free perovskite solar cells, the stability of the iodide perovskite structure ABI3 has been investigated by first-principles calculations, Bader charge analysis, and the cluster expansion… Click to show full abstract
To aid the development of Pb-free perovskite solar cells, the stability of the iodide perovskite structure ABI3 has been investigated by first-principles calculations, Bader charge analysis, and the cluster expansion method. At the A sites, methylammonium (MA, CH3NH3+), formamidinium (FA, CH(NH2)2+), and Cs+ were modeled, while at the B sites, one or two elements from Pb, Sn, Ge, In, Ga, Bi, and Sr were examined. For the partially substituted system A(B,B′)I3, we found that the stability strongly depends on the identity of the A-site cation. For example, Cs(B,B′)I3 structures are stabilized by a mixture of divalent cations, such as Pb, Sn, and Ge, at the B site. Concerning the stabilization mechanisms, Coulomb energy gain seems to be the origin of the structural stability in A = Cs structures. From our results, Cs(B,B′)I3, where the B site is occupied by divalent cations, are possible candidates for high stability, lead-free solar cell materials.
               
Click one of the above tabs to view related content.