Mercurochrome-sensitized nanostructured CuO grown directly on Cu has been used as efficient photocathode in photoelectrochemical cell. The photocurrent density of the sensitized electrode is found to enhance from −1 mA/cm2… Click to show full abstract
Mercurochrome-sensitized nanostructured CuO grown directly on Cu has been used as efficient photocathode in photoelectrochemical cell. The photocurrent density of the sensitized electrode is found to enhance from −1 mA/cm2 (unsensitized) to −2.2 mA/cm2 (dye sensitized for 24 h) at 0 V vs RHE under AM1.5G artificial solar illumination in aqueous 0.5 M Na2SO4 solution. The photoluminescence spectra demonstrated a strong absorption at 465 nm by the mercurochrome. Subsequent transfer of the photoexcited electrons to CuO conduction band enhances the photocurrent density. An incident photon-to-current conversion efficiency (IPCE) of 8% has been observed in the visible region. This is so far the highest reported value in p-type CuO based organic dye-sensitized photocathode. The dye sensitized CuO has thus the potential of photoreduction with higher Faradaic efficiency for various redox species due to additional carrier injection.
               
Click one of the above tabs to view related content.