LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effective Photocurrent Enhancement in Nanostructured CuO by Organic Dye Sensitization: Studies on Charge Transfer Kinetics

Photo by kellysikkema from unsplash

Mercurochrome-sensitized nanostructured CuO grown directly on Cu has been used as efficient photocathode in photoelectrochemical cell. The photocurrent density of the sensitized electrode is found to enhance from −1 mA/cm2… Click to show full abstract

Mercurochrome-sensitized nanostructured CuO grown directly on Cu has been used as efficient photocathode in photoelectrochemical cell. The photocurrent density of the sensitized electrode is found to enhance from −1 mA/cm2 (unsensitized) to −2.2 mA/cm2 (dye sensitized for 24 h) at 0 V vs RHE under AM1.5G artificial solar illumination in aqueous 0.5 M Na2SO4 solution. The photoluminescence spectra demonstrated a strong absorption at 465 nm by the mercurochrome. Subsequent transfer of the photoexcited electrons to CuO conduction band enhances the photocurrent density. An incident photon-to-current conversion efficiency (IPCE) of 8% has been observed in the visible region. This is so far the highest reported value in p-type CuO based organic dye-sensitized photocathode. The dye sensitized CuO has thus the potential of photoreduction with higher Faradaic efficiency for various redox species due to additional carrier injection.

Keywords: organic dye; dye sensitized; photocurrent enhancement; dye; effective photocurrent; nanostructured cuo

Journal Title: Journal of Physical Chemistry C
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.