Metamaterials have attracted considerable attention owing to their extraordinary ability in controlling the propagation of electromagnetic waves. These materials can be realized using artificial composites consisting of subwavelength metallic resonators,… Click to show full abstract
Metamaterials have attracted considerable attention owing to their extraordinary ability in controlling the propagation of electromagnetic waves. These materials can be realized using artificial composites consisting of subwavelength metallic resonators, but losses of the metallic components may significantly degrade the performance of metamaterials, especially in the visible region. Here, we propose low-loss all-dielectric metasurfaces, comprised of a monolayer of titanium dioxide (TiO2) nanoparticles, to achieve perfect reflection band at visible wavelengths. Using the Mie scattering theory, we explore the electromagnetic scattering features of one single TiO2 nanosphere and show that both electric and magnetic dipole resonances can be excited inside the sphere in the visible range. Then, a semi-infinite medium of TiO2 nanospheres is studied using Lewin effective-medium model, and we find that the effective permeability or permittivity becomes negative around the magnetic or electric resonance wavelengt...
               
Click one of the above tabs to view related content.