Tribological properties of ultrananocrystalline diamond nanowall (UNCD NW) films were investigated quantitatively in three different and controlled triboenvironmental conditions, proposing the passivation and graphitization mechanisms. However, these mechanisms are rather… Click to show full abstract
Tribological properties of ultrananocrystalline diamond nanowall (UNCD NW) films were investigated quantitatively in three different and controlled triboenvironmental conditions, proposing the passivation and graphitization mechanisms. However, these mechanisms are rather complicated and possibly can be understood in well-controlled tribological conditions. It was shown that the friction and wear of these films were high in high-vacuum and room temperature (HV–RT) tribo conditions where the passivation of carbon dangling bonds were restricted and frictional shear-induced transformation of sp3 carbon into amorphous carbon (a-C) and tetrahedral amorphous carbon (t-aC) were noticed. However, the friction coefficients were reduced to the ultralow value in ambient atmospheric and room temperature (AA–RT) tribo conditions. Here, both passivation of dangling bonds through atmospheric water vapor and graphitization of the contact interfaces were energetically favorable mechanisms. Furthermore, the conversion of d...
               
Click one of the above tabs to view related content.